4,442 research outputs found

    Heavy Metals Concentrations in Fish from Sicily (Mediterranean Sea) and Evaluation of Possible Health Risks to Consumers

    Get PDF
    Cadmium, lead, mercury and chromium concentrations in fish muscle tissue taken from various Sicilian areas were detected. Fish caught in Siracusa, nearby a petrochemical industrial area, were more contaminated by cadmium, lead and chromium (respectively 0.366, 0.32, 0.72 μg/g) than those from the other sites. In the Sicily Channel, we found the highest bioaccumulation of mercury (0.31 μg/g). Although some metals concentrations exceed the limits set by the European regulation, the estimated weekly intake was below the Provisional Tolerable Weekly Intake established by the European Food and Safety Authority, and the Target Hazard Quotient values indicate that there is no carcinogenic risk for humans

    Life cycle assessment of biosolids land application and evaluation of the factors impacting human toxicity through plants uptake

    Get PDF
    Due to the increasing environmental concerns in the wastewater treatment sector, the environmental impacts of organic waste disposal procedures require careful evaluation. However, the impacts related to the return of organic matter to agricultural soils are difficult to assess. The aim of this study is to assess the environmental impacts of land application of two types of biosolids (dried and composted, respectively) from the same wastewater treatment plant in France, and to improve the quantification of human toxicity. A Life Cycle Assessment (LCA) was carried out on a case study based on validated data from an actual wastewater treatment plant. Numerous impacts were included in this analysis, but a particular emphasis was laid on human toxicity via plant ingestion. For six out of the height impact categories included in the analysis, the dried biosolids system was more harmful to the environment than the composting route, especially regarding the consumption of primary energy. Only human toxicity via water, soil and air compartments and ozone depletion impacts were higher with the composted biosolids

    Oxidation of Phenolic Aldehydes by Ozone and Hydroxyl Radicals at the Air-Water Interface

    Get PDF
    Biomass burning releases highly reactive methoxyphenols into the atmosphere, which can undergo heterogeneous oxidation and act as precursors for secondary organic aerosol (SOA) formation. Understanding the reactivity of such methoxyphenols at the air–water interface is a matter of major atmospheric interest. Online electrospray ionization mass spectrometry (OESI-MS) is used here to study the oxidation of two methoxyphenols among three phenolic aldehydes, 4-hydroxybenzaldehyde, vanillin, and syringaldehyde, on the surface of water. The OESI-MS results together with cyclic voltammetry measurements at variable pH are integrated into a mechanism describing the heterogeneous oxidative processing of methoxyphenols by gaseous ozone (O3) and hydroxyl radicals (HO•). For a low molar ratio of O3 ≤ 66 ppbv, the OESI-MS spectra show that the oxidation is dominated by in situ produced HO• and results in the production of polyhydroxymethoxyphenols. When the level of O3 increases (i.e., ≥78 times), the ion count of polyhydroxymethoxyphenols increases, while new ring fragmentation products are generated, including conjugated aldehydes and double bonds as well as additional carboxylic acid groups. The interfacial reactivity of methoxyphenols with O3 and HO• is enhanced as the number of methoxy (−OCH3) groups increases (4-hydroxybenzaldehyde \u3c vanillin \u3c syringaldehyde). The experimental observations are summarized in two reaction pathways, leading to the formation of (1) hydroxylated methoxyphenols and (2) multifunctional carboxylic acids from fragmentation of the aromatic ring. The new highly oxygenated products with low volatility are excellent precursors for aqueous SOA formation

    Risk prioritisation of stormwater pollutant sources

    Get PDF
    This paper describes the development of a pollutant risk prioritisation methodology for the comparative assessment of stormwater pollutants discharged from differing land use types and activities. Guidelines are presented which evaluate available data with respect to ‘likelihood of occurrence’ and ‘severity of impact’. The use of the developed approach is demonstrated through its application to total suspended solids, biochemical oxygen demand, lead and cadmium. The proposed benchmarking scheme represents a transparent and auditable mechanism to support the synthesis of data from a variety of sources and is sufficiently flexible to incorporate the use of chemical, physical and/or ecological data sets. Practitioners involved in developing and implementing pollutant mitigation programmes are assisted in two key ways. Firstly through enabling the risks to receiving waters from diffuse pollution on a source-by-source and/or pollutant-by-pollutant basis at a catchment scale to be comparatively assessed and prioritised. Secondly, the methodology informs the selection of appropriate diffuse pollution control strategies
    corecore